data("data_gadgets")
dat <- data_gadgets
dta_gtable(dat)
| gadgets_owned |
|---|
| Smartwatch, Tablet, Smartphone |
| Tablet, Smartwatch, Smart TV, Desktop Computer |
| Smartphone |
| Laptop, Tablet |
| Tablet, Smart TV, Digital Camera, Laptop |
| Laptop, Desktop Computer, Digital Camera, Smart TV, Smartphone |
| Digital Camera, Smartphone, Desktop Computer, Smartwatch |
| Smartwatch, Smart TV, Laptop, Smartphone |
| Desktop Computer |
| Smartphone, Laptop, Smart TV, Smartwatch |
| Tablet |
| Digital Camera, Tablet, Desktop Computer |
| Digital Camera, Desktop Computer, Smart TV, Smartwatch, Laptop |
| Tablet, Desktop Computer, Smart TV |
| Digital Camera, Desktop Computer, Smart TV, Smartphone, Laptop |
# Split `gadgets_owned` column into separate columns.
# The created columns will be logical (i.e. TRUE / FALSE).
df <- dta_mrq(
dat = dat,
.column = gadgets_owned,
delimeter = ", ",
is_clean_names = TRUE)
dta_gtable(df)
| gadgets_owned |
Smartwatch |
Tablet |
Smartphone |
Smart TV |
Desktop Computer |
Laptop |
Digital Camera |
|---|
| Smartwatch, Tablet, Smartphone |
TRUE |
TRUE |
TRUE |
FALSE |
FALSE |
FALSE |
FALSE |
| Tablet, Smartwatch, Smart TV, Desktop Computer |
TRUE |
TRUE |
FALSE |
TRUE |
TRUE |
FALSE |
FALSE |
| Smartphone |
FALSE |
FALSE |
TRUE |
FALSE |
FALSE |
FALSE |
FALSE |
| Laptop, Tablet |
FALSE |
TRUE |
FALSE |
FALSE |
FALSE |
TRUE |
FALSE |
| Tablet, Smart TV, Digital Camera, Laptop |
FALSE |
TRUE |
FALSE |
TRUE |
FALSE |
TRUE |
TRUE |
| Laptop, Desktop Computer, Digital Camera, Smart TV, Smartphone |
FALSE |
FALSE |
TRUE |
TRUE |
TRUE |
TRUE |
TRUE |
| Digital Camera, Smartphone, Desktop Computer, Smartwatch |
TRUE |
FALSE |
TRUE |
FALSE |
TRUE |
FALSE |
TRUE |
| Smartwatch, Smart TV, Laptop, Smartphone |
TRUE |
FALSE |
TRUE |
TRUE |
FALSE |
TRUE |
FALSE |
| Desktop Computer |
FALSE |
FALSE |
FALSE |
FALSE |
TRUE |
FALSE |
FALSE |
| Smartphone, Laptop, Smart TV, Smartwatch |
TRUE |
FALSE |
TRUE |
TRUE |
FALSE |
TRUE |
FALSE |
| Tablet |
FALSE |
TRUE |
FALSE |
FALSE |
FALSE |
FALSE |
FALSE |
| Digital Camera, Tablet, Desktop Computer |
FALSE |
TRUE |
FALSE |
FALSE |
TRUE |
FALSE |
TRUE |
| Digital Camera, Desktop Computer, Smart TV, Smartwatch, Laptop |
TRUE |
FALSE |
FALSE |
TRUE |
TRUE |
TRUE |
TRUE |
| Tablet, Desktop Computer, Smart TV |
FALSE |
TRUE |
FALSE |
TRUE |
TRUE |
FALSE |
FALSE |
| Digital Camera, Desktop Computer, Smart TV, Smartphone, Laptop |
FALSE |
FALSE |
TRUE |
TRUE |
TRUE |
TRUE |
TRUE |
# Convert the created columns from logical (TRUE / FALSE)
# columns to numeric.
df2 <- dta_mrq(
dat = dat,
.column = gadgets_owned,
delimeter = ", ",
as_numeric = TRUE,
is_clean_names = TRUE
)
dta_gtable(df2)
| gadgets_owned |
Smartwatch |
Tablet |
Smartphone |
Smart TV |
Desktop Computer |
Laptop |
Digital Camera |
|---|
| Smartwatch, Tablet, Smartphone |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
| Tablet, Smartwatch, Smart TV, Desktop Computer |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
| Smartphone |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
| Laptop, Tablet |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
| Tablet, Smart TV, Digital Camera, Laptop |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
| Laptop, Desktop Computer, Digital Camera, Smart TV, Smartphone |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
| Digital Camera, Smartphone, Desktop Computer, Smartwatch |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
| Smartwatch, Smart TV, Laptop, Smartphone |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
| Desktop Computer |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
| Smartphone, Laptop, Smart TV, Smartwatch |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
| Tablet |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
| Digital Camera, Tablet, Desktop Computer |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
| Digital Camera, Desktop Computer, Smart TV, Smartwatch, Laptop |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
| Tablet, Desktop Computer, Smart TV |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
| Digital Camera, Desktop Computer, Smart TV, Smartphone, Laptop |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
# You can specify the labels to be used. In the example
# below, the columns will be character with Yes / No.
df3 <- dta_mrq(
dat = dat,
.column = gadgets_owned,
delimeter = ", ",
labels = c("Yes", "No"),
is_clean_names = TRUE,
)
dta_gtable(df3)
| gadgets_owned |
Smartwatch |
Tablet |
Smartphone |
Smart TV |
Desktop Computer |
Laptop |
Digital Camera |
|---|
| Smartwatch, Tablet, Smartphone |
Yes |
Yes |
Yes |
No |
No |
No |
No |
| Tablet, Smartwatch, Smart TV, Desktop Computer |
Yes |
Yes |
No |
Yes |
Yes |
No |
No |
| Smartphone |
No |
No |
Yes |
No |
No |
No |
No |
| Laptop, Tablet |
No |
Yes |
No |
No |
No |
Yes |
No |
| Tablet, Smart TV, Digital Camera, Laptop |
No |
Yes |
No |
Yes |
No |
Yes |
Yes |
| Laptop, Desktop Computer, Digital Camera, Smart TV, Smartphone |
No |
No |
Yes |
Yes |
Yes |
Yes |
Yes |
| Digital Camera, Smartphone, Desktop Computer, Smartwatch |
Yes |
No |
Yes |
No |
Yes |
No |
Yes |
| Smartwatch, Smart TV, Laptop, Smartphone |
Yes |
No |
Yes |
Yes |
No |
Yes |
No |
| Desktop Computer |
No |
No |
No |
No |
Yes |
No |
No |
| Smartphone, Laptop, Smart TV, Smartwatch |
Yes |
No |
Yes |
Yes |
No |
Yes |
No |
| Tablet |
No |
Yes |
No |
No |
No |
No |
No |
| Digital Camera, Tablet, Desktop Computer |
No |
Yes |
No |
No |
Yes |
No |
Yes |
| Digital Camera, Desktop Computer, Smart TV, Smartwatch, Laptop |
Yes |
No |
No |
Yes |
Yes |
Yes |
Yes |
| Tablet, Desktop Computer, Smart TV |
No |
Yes |
No |
Yes |
Yes |
No |
No |
| Digital Camera, Desktop Computer, Smart TV, Smartphone, Laptop |
No |
No |
Yes |
Yes |
Yes |
Yes |
Yes |
# Any other labels could be used. For example
# Positive / Negative e.g. in the case of diseases.
df4 <- dta_mrq(
dat = dat,
.column = gadgets_owned,
delimeter = ", ",
labels = c("Positive", "Negative"),
is_clean_names = TRUE,
)
dta_gtable(df4)
| gadgets_owned |
Smartwatch |
Tablet |
Smartphone |
Smart TV |
Desktop Computer |
Laptop |
Digital Camera |
|---|
| Smartwatch, Tablet, Smartphone |
Positive |
Positive |
Positive |
Negative |
Negative |
Negative |
Negative |
| Tablet, Smartwatch, Smart TV, Desktop Computer |
Positive |
Positive |
Negative |
Positive |
Positive |
Negative |
Negative |
| Smartphone |
Negative |
Negative |
Positive |
Negative |
Negative |
Negative |
Negative |
| Laptop, Tablet |
Negative |
Positive |
Negative |
Negative |
Negative |
Positive |
Negative |
| Tablet, Smart TV, Digital Camera, Laptop |
Negative |
Positive |
Negative |
Positive |
Negative |
Positive |
Positive |
| Laptop, Desktop Computer, Digital Camera, Smart TV, Smartphone |
Negative |
Negative |
Positive |
Positive |
Positive |
Positive |
Positive |
| Digital Camera, Smartphone, Desktop Computer, Smartwatch |
Positive |
Negative |
Positive |
Negative |
Positive |
Negative |
Positive |
| Smartwatch, Smart TV, Laptop, Smartphone |
Positive |
Negative |
Positive |
Positive |
Negative |
Positive |
Negative |
| Desktop Computer |
Negative |
Negative |
Negative |
Negative |
Positive |
Negative |
Negative |
| Smartphone, Laptop, Smart TV, Smartwatch |
Positive |
Negative |
Positive |
Positive |
Negative |
Positive |
Negative |
| Tablet |
Negative |
Positive |
Negative |
Negative |
Negative |
Negative |
Negative |
| Digital Camera, Tablet, Desktop Computer |
Negative |
Positive |
Negative |
Negative |
Positive |
Negative |
Positive |
| Digital Camera, Desktop Computer, Smart TV, Smartwatch, Laptop |
Positive |
Negative |
Negative |
Positive |
Positive |
Positive |
Positive |
| Tablet, Desktop Computer, Smart TV |
Negative |
Positive |
Negative |
Positive |
Positive |
Negative |
Negative |
| Digital Camera, Desktop Computer, Smart TV, Smartphone, Laptop |
Negative |
Negative |
Positive |
Positive |
Positive |
Positive |
Positive |
# Use numeric values and specify a `prefix` for the
# column names.
df5 <- dta_mrq(
dat = dat,
.column = gadgets_owned,
delimeter = ", ",
prefix = "gad_",
labels = c(1, 2),
is_clean_names = TRUE
)
dta_gtable(df5)
| gadgets_owned |
Smartwatch |
Tablet |
Smartphone |
Smart TV |
Desktop Computer |
Laptop |
Digital Camera |
|---|
| Smartwatch, Tablet, Smartphone |
1 |
1 |
1 |
2 |
2 |
2 |
2 |
| Tablet, Smartwatch, Smart TV, Desktop Computer |
1 |
1 |
2 |
1 |
1 |
2 |
2 |
| Smartphone |
2 |
2 |
1 |
2 |
2 |
2 |
2 |
| Laptop, Tablet |
2 |
1 |
2 |
2 |
2 |
1 |
2 |
| Tablet, Smart TV, Digital Camera, Laptop |
2 |
1 |
2 |
1 |
2 |
1 |
1 |
| Laptop, Desktop Computer, Digital Camera, Smart TV, Smartphone |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
| Digital Camera, Smartphone, Desktop Computer, Smartwatch |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
| Smartwatch, Smart TV, Laptop, Smartphone |
1 |
2 |
1 |
1 |
2 |
1 |
2 |
| Desktop Computer |
2 |
2 |
2 |
2 |
1 |
2 |
2 |
| Smartphone, Laptop, Smart TV, Smartwatch |
1 |
2 |
1 |
1 |
2 |
1 |
2 |
| Tablet |
2 |
1 |
2 |
2 |
2 |
2 |
2 |
| Digital Camera, Tablet, Desktop Computer |
2 |
1 |
2 |
2 |
1 |
2 |
1 |
| Digital Camera, Desktop Computer, Smart TV, Smartwatch, Laptop |
1 |
2 |
2 |
1 |
1 |
1 |
1 |
| Tablet, Desktop Computer, Smart TV |
2 |
1 |
2 |
1 |
1 |
2 |
2 |
| Digital Camera, Desktop Computer, Smart TV, Smartphone, Laptop |
2 |
2 |
1 |
1 |
1 |
1 |
1 |